APES ~ ATOM REVIEW NOTES

- I. Subatomic particles
 - A. electron (e) negatively charged subatomic particles
 - fixed charge of -1
 - very light mass $(9.11 \times 10^{-28} \text{ g})$
 - orbit the center
 - B. *proton* (p+) positively charged subatomic particle
 - (a hydrogen atom stripped of its electron is a "raw proton")
 - fixed charge of +1
 - same mass as a neutron $(1.67 \times 10^{-24} \text{ g})$
 - located in the center of an atom
 - C. *neutron* (n^0) neutral subatomic particle
 - fixed charge of 0
 - same mass as a proton $(1.67 \times 10^{-24} \text{ g})$
 - located in the nucleus
 - D. there are hundreds of subatomic particles, but these are the important ones to us
- II. Atomic number—number of protons in the nucleus of an atom
 - A. characteristics
 - 1) the atomic number is the unique I.D. number of an element
 - 2) each element only has one atomic number
 - B. examples

What is the atomic number of the following elements?

```
O (8) I (53) Cl (17) Au (79)
```

C. atomic neutrality:

1) atoms are electrically neutral

number of protons = number of electrons in an atom

- 2) examples
 - How many electrons does Cu have? (29)

How many electrons does Rn have? (86)

III. Mass number

MASS NUMBER = PROTONS + NEUTRONS # OF NEUTRONS = MASS NUMBER - ATOMIC NUMBER

A. symbols can be written two ways:

mass number SYMBOL	12 C	SYMBOL—atomic number
atomic number	6	C-12

B. mass number is the total mass of the nucleus

C. mass number is not the decimal number on the periodic table! (that's atomic mass)

D. example

How many p^+ , n^0 and e^- are in an atom of S-34?

S = sulfur, which is #16. S has 16 p^+ and because $\# \text{ p}^+ = \# \text{ e}^-$, S has 16 e^- . Mass number = 34. $\# \text{ n}^0 = \text{mass } \# \text{ - atomic } \# = 34\text{ - }16 = 18 \text{ n}^0$.

IV. Isotopes

- A. atoms of the same element that contain different numbers of neutrons
 - 1) same number of p+
 - 2) different mass numbers
 - 3) different atomic masses
 - 4) in nature, most elements occur as a mix of two or more isotopes
- B. examples:

ISOTOPE	MASS #	ATOMIC #	<u>p</u> [±]	<u>n⁰</u>	<u>e</u> -	
O-16	16	8	8	8	8	
O-17	17	8	8	9	8	
O-18	18	8	8	10	8	

Remember, $\# n^0 = mass$ number - atomic number.

V. Atomic mass

A. a weighted average based on mass and relative abundance of all naturally occurring isotopes of an element

ATOMIC MASS = (MASS x RELATIVE ABUNDANCE) of natural isotope #1 + (MASS x RELATIVE ABUNDANCE) of natural isotope #2 + (MASS x RELATIVE ABUNDANCE) of natural isotope #3 ... etc.

B. unit is amu = atomic mass unit

C. synthetic isotopes (made in lab, not found in nature) are not considered

D. example

Magnesium has three isotopes: Mg-24, Mg-25, and Mg-26:

ISOTOPE	ABUNDANCE	ATOMIC MASS
Mg-24	78.70%	23.985
Mg-25	10.13%	24.986
Mg-26	11.17%	25.983

Using the data, calculate the atomic mass of Mg.

ATOMIC MASS = (MASS x RELATIVE ABUNDANCE) (23.985)(0.7870) + (24.986)(0.1013) + (25.983)(0.1117) = 24.31 amu