APES MATH TIPS for the AP Exam – Bauck

- 1) Show all work. No work, no credit.
- 2) Show all units in each step and in the answer. Units provide valuable information.
- 3) **Be proficient at** *unit manipulation*, also called *dimensional analysis* or *factor label*. This is one of the most important math skills, because you will have to fit numbers with units together through multiplication and division to get the desired results.
- 4) Know simple conversion factors such as the number of days in a year or hours in a day.
- 5) Approximate populations to know: World, U.S., China, India, Indonesia, Brazil (check general values for the top 10 countries in the world)
- 6) **Develop good "***math sense***" or "***math literacy***." The answers should make sense. If you calculate a cost of \$50 billion per gallon of water, does this seem right?**

Know and convert metric prejizes.			
Т	tera-	1012	(trillion 1,000,000,000,000)
G	giga-	109	(billion 1,000,000,000)
М	mega-	106	(million 1,000,000)
k	kilo-	10 ³	(1000)
h	hecto-	10 ²	(100)
da	deka-	10^{1}	(10)
d	deci-	10-1	(0.1)
с	centi-	10-2	(0.01)
m	milli-	10-3	(0.001)
μ	micro-	10-6	(one-millionth 0.000001)
n	nano-	10-9	(one-billionth 0.00000001)
р	pico-	10-12	(one-trillionth 0.00000000001)

7) Know and convert *metric prefixes*.

8) Understand common statistical terms. The mean is the mathematical average. The median is the 50th percentile, which is the middle value in the distribution of numbers when ranked in increasing order. The mode is the number that occurs most frequently in the distribution.

9) Recognize units of *area* and *volume*, and be able to *convert areas and volumes*.

a) AREA =
$$L \times W$$

- b) VOLUME = $L \times W \times H$
 - $1 \text{ m} = __ \text{ mm...}$ answer $\rightarrow 1000$

 $1 \text{ m}^3 = ___ \text{mm}^3$ answer $\rightarrow 1^3 \text{ m}^3 = 1000^3 \text{ mm}^3 (10^3)^3 = 10^9 \text{ mm}^3$

For area conversions, square the number, square the unit. For volume conversions, cube the number, cube the unit.

10) **Density = mass / volume**

Calculate density; be able to recognize common units for mass and volume.

Input scientific notation correctly into your calculator. M x 10ⁿ
Scientific notation does not have to follow the strict format of M being between 1-9.9.
300 million can be written 300 x 10⁶.

12) Know growth rate calculations. (see 2003 FRQ #2)

Growth rate = [CRUDE BIRTH RATE + immigration)] – [(CRUDE DEATH RATE + emigration)] CBR = crude birth rate = # births per 1000, per year CDR = crude death rate = # deaths per 1000, per year (CBR - CDR) / 10 = percent change

13) Calculate *percentages*. Example: 80/200 = 40%

14) Calculate percent change:

a) The rate of change (percent change, growth rate) from one period to another =

 $[(V_{present} - V_{past}) / V_{past}] * 100 \qquad (where V = value)$

b) **Annual rate of change:** take answer from step a) and divide by the number of years between past and present values

Example: A particular city has a population of 800,000 in 1990 and a population of 1,500,000 in 2008. Find the growth rate of the population in this city.

Growth Rate = [(1,500,000 - 800,000) / 800,000] * 100 = 700,000/800,000 * 100 = 87.5% OR $(1,500,000 - 800,000) \times 100 = 15.8 \times 100 = 7/8 \times 100 = 87.5\%$

800.000

Average Annual Growth Rate = 87.5% / 18 years = 4.86%

8

15) Calculate percent difference.

Percent Difference = <u>| First Value - Second Value |</u> × 100% (First Value + Second Value) / 2

16) Know the *Rule of 70* to predict doubling time.

Doubling time = 70 / annual growth rate (in %, not decimal!) Example: If a population is growing at a rate of 4%, the population will double in 17.5 years. (70 / 4 = 17.5)

17) Determine half-life.

Example: A sample of radwaste with a half-life of 10 years has an activity level of 2 Ci (curies). How many years will it take for the sample to have an activity level of 0.25 Ci?

Answer: 2 Ci \rightarrow 1 Ci (one half-life = 10 yrs.)

1 Ci \rightarrow 0.5 Ci (another half-life = 10 additional yrs.)

 $0.5 \text{ Ci} \rightarrow 0.25 \text{ Ci}$ (another half-life = 10 additional yrs.) = 30 years

- 18) **Calculate pH using –log [H⁺].** $Log_{10} x = y$ and $10^{y} = x$. Remember that for every one-increment change in pH, the ions change by a factor of 10. Example: If [H⁺] is 10^{-6} M, the pH is 6 and the solution is a weak acid.
- 19) **Population density = number of individuals / unit area** (example: 200 people $/mi^2$)
- 20) Know that "per capita" means per person; per unit of population.
- 21) NPP (Net Primary Productivity)

NPP = GPP – R (net primary productivity = gross primary productivity – respiration)

22) **Graphing tips:** include a title and key; set consistent increments for both axes; connect dots for a smooth curve; show dots clearly; know how to use a scatterplot; interpolate and extrapolate; be comfortable with graphing by hand.

"TAILS" and "DRY MIX"

T = title

- -- descriptive
- -- written at the top, above the graph
- -- includes both the dependent and independent variables
- $\mathbf{A} = \mathbf{axes}$
 - -- Y is vertical axis and X is horizontal axis
 - -- DRY MIX: Dependent Responding on Y; Manipulated Independent on X
 - -- dependent or responding variable = what is observed/measured
 - -- independent or manipulated variable = what is changed by you or the scientist

I = interval

- -- If an axis contains a number range, decide on an appropriate interval for the range of numbers you have chosen.
- -- It is highly recommended to use a common number for an interval (2, 5, 10, 25, 100, etc.)
- -- Intervals must be consistent within an axis. The same size space cannot represent 5 and 15.

L = labels

- -- Label units of each axis.
- -- Be sure labels are specific enough to tell the reader exactly what is being measured.
- -- Label multiple data sets with a key.

S = scale

- -- The scale refers to the minimum and maximum numbers used on each axis. They may or may not begin at zero.
- -- The minimum number used for the scale should be a little lower than the lowest value.
- -- The maximum number used or the scale should be a little higher than the highest value.